On Mass Sensing Using Micro/nano Resonators - Approaches, Challenges and Directions

نویسندگان

  • Bhaskar Choubey
  • Alistair McEwan
چکیده

Micro/Nano electromechanical systems based Mass sensors are being increasingly used for detecting very low masses, with significant applications in bio-sensing as well as environmental sensing. A number of different shapes, excitation mechanisms as well as materials have been suggested for these sensors. In addition, with reducing dimensions due to improvement in fabrication, these sensors have the potential to measure bacterial level masses. This paper reviews some of the research directions in this field. Various sensing and actuation strategies for these resonators are discussed. In addition, three important challenges, which have the potential of providing new directions of research are also explored. These include quality factor, increasing nonlinearity and coupling. Coupling of sensors can provide a unique opportunity to build several resonant sensors on the same chip and reduce the number of contacts required as well as the potential bandwidth Index Words Microelectromechanical systems, Mass sensors, damping, nonlinearity, coupled systems 1 INTERNATIONAL JOURNAL ON SMART SENSING AND INTELLIGENT SYSTEMS VOL. 9, NO. 1, MARCH 2016

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tunable Micro- and Nanomechanical Resonators

Advances in micro- and nanofabrication technologies have enabled the development of novel micro- and nanomechanical resonators which have attracted significant attention due to their fascinating physical properties and growing potential applications. In this review, we have presented a brief overview of the resonance behavior and frequency tuning principles by varying either the mass or the sti...

متن کامل

Two-curve-shaped biosensor using photonic crystal nano-ring resonators

We design a novel nano-ring resonator using two-dimensional photonic crystal (2D-PhC), for bio-sensing applications. The structure of biosensor is created by two-curve-shaped ring resonator which sandwiched by two waveguides. These are configured by removing one row of air holes. The refractive index of sensing hole is changed by binding an analyte. Hence, intensity of the transmission spectrum...

متن کامل

A mechanical micro molecular mass sensor

One of the bio-sensing mechanisms is mechanical. Rather than measuring shift in resonance frequency, we adopt to measure the change in spring constant due to adsorption, as one of the fundamental sensing mechanism. This study explains  determination of spring constant of a surface functionalized micro machined micro cantilever, which resonates in a trapezoidal cavity-on Silicon wafer, with the ...

متن کامل

A mechanical micro molecular mass sensor

One of the bio-sensing mechanisms is mechanical. Rather than measuring shift in resonance frequency, we adopt to measure the change in spring constant due to adsorption, as one of the fundamental sensing mechanism. This study explains  determination of spring constant of a surface functionalized micro machined micro cantilever, which resonates in a trapezoidal cavity-on Silicon wafer, with the ...

متن کامل

Detecting Both the Mass and Position of an Accreted Particle by a Micro/Nano-Mechanical Resonator Sensor

In the application of a micro-/nano-mechanical resonator, the position of an accreted particle and the resonant frequencies are measured by two different physical systems. Detecting the particle position sometimes can be extremely difficult or even impossible, especially when the particle is as small as an atom or a molecule. Using the resonant frequencies to determine the mass and position of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015